Принцип работы мультивибратора на транзисторах

Основным принципом работы нестабильного мультивибратора является небольшое изменение электрических свойств или характеристик транзистора. Это различие приводит к тому, что один транзистор включается быстрее, чем другой, когда питание подается в первый раз, что вызывает колебания.

Нестабильный мультивибратор – работа и принципы

Мультивибраторы – это еще одна форма осцилляторов. Генератор представляет собой электронную схему, которая способна поддерживать сигнал переменного тока на выходе. Он может генерировать прямоугольные, линейные или импульсные сигналы. Для колебания генератор должен удовлетворять двум условиям Баркгаузена:

Товары для изобретателей Ссылка на магазин.

Т коэффициент усиления контура он должен быть немного больше единицы.

Сдвиг фазы цикла должен быть 0 градусов или 360 градусов.

Для выполнения обоих условий генератор должен иметь некоторую форму усилителя, и часть его выхода должна быть регенерирована на вход. Если коэффициент усиления усилителя меньше единицы, схема не будет колебаться, а если она больше единицы, схема будет перегружена и будет давать искаженную форму волны. Простой генератор может генерировать синусоидальную волну, но не может генерировать прямоугольную волну. Прямоугольная волна может быть сформирована с помощью мультивибратора.

Мультивибратор – это форма генератора, которая имеет две ступени, благодаря которым мы можем получить выход из любого из состояний. Это в основном две схемы усилителя, скомпонованные с регенеративной обратной связью. При этом ни один из транзисторов не проводит одновременно. Одновременно только один транзистор проводит, а другой находится в выключенном состоянии. Некоторые схемы имеют определенные состояния; состояние с быстрым переходом называется процессами переключения, где происходит быстрое изменение тока и напряжения. Это переключение называется триггерным. Следовательно, мы можем запустить цепь внутри или снаружи.

Схемы имеют два состояния.

Одним из них является стабильное состояние, в котором цепь остается навсегда без какого-либо запуска.
Другое состояние является нестабильным: в этом состоянии схема остается в течение ограниченного периода времени без какого-либо внешнего запуска и переключается в другое состояние. Следовательно, использование многовибарторов осуществляется в двух состояниях цепей, таких как таймеры и триггеры.

Нестабильный мультивибратор с использованием транзистора

Это свободно работающий генератор, который непрерывно переключается между двумя нестабильными состояниями. При отсутствии внешнего сигнала транзисторы поочередно переключаются из состояния отключения в состояние насыщения на частоте, определяемой постоянными времени RC цепей связи. Если эти постоянные времени равны (R и C равны), то будет генерироваться прямоугольная волна с частотой 1 / 1,4 RC. Следовательно, нестабильный мультивибратор называется генератором импульсов или генератором прямоугольных импульсов. Чем больше значение базовой нагрузки R2 и R3 по отношению к нагрузке коллектора R1 и R4, тем больше коэффициент усиления по току и острее будет край сигнала.

Основным принципом работы нестабильного мультивибратора является небольшое изменение электрических свойств или характеристик транзистора. Это различие приводит к тому, что один транзистор включается быстрее, чем другой, когда питание подается в первый раз, что вызывает колебания.

Схема Объяснение

нестабильный мультивибратор состоит из двух поперечных связи усилителей RC.
Схема имеет два нестабильных состояния
Когда V1 = НИЗКИЙ и V2 = ВЫСОКИЙ, тогда Q1 ВКЛ и Q2 ВЫКЛ
Когда V1 = ВЫСОКИЙ и V2 = НИЗКИЙ, Q1 ВЫКЛ. и Q2 ВКЛ.
При этом R1 = R4, R2 = R3, R1 должно быть больше, чем R2
C1 = C2
При первом включении цепи ни один из транзисторов не включен.
Базовое напряжение обоих транзисторов начинает увеличиваться. Любой из транзисторов включается первым из-за разницы в легировании и электрических характеристиках транзистора.

Рис. 1: Принципиальная схема работы транзисторного нестабильного мультивибратора

Принципиальная схема работы транзисторного нестабильного мультивибратора

Мы не можем сказать, какой транзистор проводит первым, поэтому мы предполагаем, что Q1 проводит первым, а Q2 выключен (C2 полностью заряжен).

Q1 проводит, а Q2 отключен, следовательно, VC1 = 0 В, так как весь ток на землю из-за короткого замыкания Q1, и VC2 = Vcc, так как все напряжение на VC2 падает из-за разомкнутой цепи TR2 (равно напряжению питания).
Из-за высокого напряжения VC2 конденсатор C2 начинает заряжаться через Q1 через R4, а C1 начинает заряжаться через R2 через Q1. Время, необходимое для зарядки C1 (T1 = R2C1), больше, чем время, необходимое для зарядки C2 (T2 = R4C2).
Так как правая пластина C1 подключена к базе Q2 и заряжается, значит, у этой пластины высокий потенциал, и когда она превышает напряжение 0,65 В, она включается Q2.
Поскольку C2 полностью заряжен, его левая пластина имеет напряжение -Vcc или -5V и подключена к базе Q1. Следовательно, он выключается Q2
TR Теперь TR1 выключен, и Q2 проводит, следовательно, VC1 = 5 В и VC2 = 0 В. Левая пластина C1 ранее находилась под напряжением -0,65 В, которое начинает подниматься до 5 В и подключается к коллектору Q1. C1 сначала разряжается от 0 до 0,65 В, а затем начинает заряжаться через R1 через Q2. Во время зарядки правая пластина С1 имеет низкий потенциал, который выключает Q2.
Правая пластина C2 подключена к коллектору Q2 и предварительно находится на + 5В. Таким образом, C2 сначала разряжается от 5 В до 0 В, а затем начинает заряжаться через сопротивление R3. Левая пластина C2 во время зарядки находится под высоким потенциалом, который включает Q1, когда достигает напряжения 0,65 В.

Рис. 2: Принципиальная схема работы транзисторного нестабильного мультивибратора

Принципиальная схема работы транзисторного нестабильного мультивибратора

Теперь Q1 проводит, а Q2 выключен. Вышеуказанная последовательность повторяется, и мы получаем сигнал на обоих коллекторах транзистора, который не в фазе друг с другом. Для получения идеальной прямоугольной волны любым коллектором транзистора мы принимаем как сопротивление коллектора транзистора, базовое сопротивление, то есть (R1 = R4), (R2 = R3), а также то же значение конденсатора, что делает нашу схему симметричной. Следовательно, рабочий цикл для низкого и высокого значения выходного сигнала является тем же, который генерирует прямоугольную волну
Constant Постоянная времени формы сигнала зависит от базового сопротивления и коллектора транзистора. Мы можем рассчитать его период времени по: Постоянная времени = 0.693RC

Принцип действия мультивибратора на видео c объяснением

В этом видеоуроке канала Паяльник TV покажем, как взаимосвязаны элементы электрической цепи и познакомимся с происходящими в ней процессами. Первой схемой, на основе которой будет рассмотрен принцип работы, является схема мультивибратора на транзисторах. Схема может находиться в одном из двух состояний и периодически переходит из одного в другое.

Анализ 2-х состояний мультивибратора.

Всё, что мы наблюдаем сейчас, это два светодиода, которые поочерёдно мигают. Почему это происходит? Рассмотрим сначала первое состояние.

Первый транзистор VT1 закрыт, а второй транзистор полностью открыт и не препятствует протеканию коллекторного тока. Транзистор в этот момент находится в режиме насыщения, что позволяет снизить на нём падение напряжения. И поэтому правый светодиод горит в полную силу. Конденсатор C1 в первый момент времени был разряжен, и ток беспрепятственно проходил на базу транзистора VT2, полностью открывая его. Но спустя мгновение конденсатор начинает быстро заряжаться базовым током второго транзистора через резистор R1. После того, как он полностью зарядится (а как известно, полностью заряженный конденсатор не пропускает ток), то транзистор VT2  вследствие этого закрывается и светодиод гаснет.

Напряжение на конденсаторе C1 равно произведению базового тока на сопротивление резистора R2. Перенесемся во времени назад. Пока транзистор VT2 был открыт и правый светодиод горел, конденсатор C2, заряженный ранее в предыдущем состоянии, начинает медленно разряжаться через открытый транзистор VT2 и резистор R3. Пока он не разрядился, напряжение на базе VT1 будет отрицательным, которое полностью запирает транзистор. Первый светодиод не горит. Получается, что к моменту затухания второго светодиода конденсатор C2 успевает разрядиться и переходит в готовность пропустить ток на базу первого транзистора VT1. К тому моменту, когда перестаёт гореть второй светодиод, загорается первый светодиод.

А во втором состоянии происходит всё то же самое, но наоборот, транзистор VT1 открыт, VT2 закрыт. Переход в другое состояние происходит тогда, когда конденсатор C2 разряжается, напряжение на нём уменьшается. Разрядившись полностью, он начинает заряжаться в обратную сторону. Когда напряжение на переходе база-эмиттер транзистора VT1 достигнет напряжения, достаточного для его открывания, примерно 0,7 В, этот транзистор начнёт открываться и первый светодиод загорится.

Снова обратимся к схеме.

Через резисторы R1 и R4 происходит зарядка конденсаторов, а через R3 и R2 происходит разрядка. Резисторы R1 и R4 ограничивают ток первого и второго светодиода. От их сопротивления зависит не только яркость свечения светодиодов. Они также определяют время зарядки конденсаторов. Сопротивление R1 и R4 подбирается намного меньшее, чем R2 и R3, чтобы зарядка конденсаторов происходила быстрее, чем их разрядка. Мультивибратор используется для получения прямоугольных импульсов, которые снимаются с коллектора транзистора. При этом нагрузка подключается параллельно одному из коллекторных резисторов R1 или R4.

На графике представлены прямоугольные импульсы, вырабатываемые данной схемой. Одна из областей называется фронт импульса. Фронт имеет наклон, и чем больше будет время зарядки конденсаторов, тем этот наклон будет больше.

принцип действия мультивибратора
принцип действия мультивибратора

Если в мультивибраторе использованы одинаковые транзисторы, конденсаторы одинаковой ёмкости, и если резисторы имеют симметричные сопротивления, то такой мультивибратор называется симметричным. Он имеет одинаковую длительность импульсов и длительность пауз. А если имеются различия в параметрах, то мультивибратор будет несимметричным. Когда мы подключаем мультивибратор к источнику питания, то в первый момент времени оба конденсатора разряжены, а значит на базу обоих конденсаторов поступит ток и появится неустановившийся режим работы, при котором должен открыться лишь один из транзисторов. Так как эти элементы схемы имеют некоторые погрешности номиналов и параметров, один из транзисторов откроется первым, и мультивибратор запустится.

Если вы захотите смоделировать данную схему в программе Multisim, то нужно выставить номиналы резисторов R2 и R3 так, чтобы их сопротивления отличались хотя бы на десятую часть Ома. То же самое проделайте с ёмкостью конденсаторов, иначе мультивибратор может не запуститься. При практической реализации данной схемы я рекомендую осуществлять питание напряжением от 3 до 10 Вольт, а параметры самих элементов сейчас вы узнаете. При условии, что используется транзистор КТ315. Резисторы R1 и R4 не оказывают влияния на частоту импульсов. В нашем случае они ограничивают ток светодиода. Сопротивление резисторов R1 и R4 можно взять от 300 Ом до 1кОм. Сопротивление резисторов R2 и R3 от 15 кОм до 200 кОм. Ёмкость конденсаторов от 10 до 100 мкФ. Представим таблицу со значениями сопротивлений и ёмкостей, в которой приведены примерная ожидаемая частота импульсов. То есть, чтобы получить импульс длительностью 7 секунд, то есть, длительность свечения одного светодиода, равная 7 секундам, нужно использовать резисторы R2 и R3 сопротивлением 100 кОм и конденсатора ёмкостью 100 мкФ.

Вывод.

Времязадающими элементами данной схемы являются резисторы R2, R3 и конденсаторы C1 и C2. Чем меньше их номиналы, тем чаще будут переключаться транзисторы, и тем чаще будут мерцать светодиоды.

Мультивибратор можно реализовать не только на транзисторах, но и на базе микросхем. Оставляйте свои комментарии, не забывайте подписаться на канал «Паяльник TV» на ютубе, чтобы не пропустить новые интересные видео.

Еще интересная статья о радиопередатчике.

5 комментариев

  1. почему при включении одного светодиода ток проходит также и через второй но тот не горит?

  2. Я с братом спаял мультивибратор, что бы кнопку не нажимать постоянно в игре Exelon на ZX Spectrum. С мультивибратором можно было просто зажать кнопку и космонавт в игре сам пулял, с задававшейся по переменному резистору частотой. Потом мне пришлось уже в КС 1.6 применять опыт радиоэлектронной работы, когда потребовалось срезать громкость выстрелов. В КС1.6 очень важно слышать врага, у меня были профессиональные наушники, и они помогали мне очень хорошо слышать противника, что давало мне огромные преимущества. Проблема была только в громкости выстрелов, которые на контрасте с шорохом шагов просто выносили мне мозг. Я нашёл в журнале Радио нужную схему, но собрать её так и не успел. Но ничего сделаю ещё. Знание – сила.

  3. Сложное на самом деле оказывается до смешного простым! Вспомните, что такое конденсатор: две пластины, разделенные диэлектриком. На одну подаётся минус, на другую плюс. Автор на схеме указал где плюс, значит вы сами можете мысленно на другой стороне поставить минус. Теперь вы видите, что на эти стороны конденсаторов с минусом подсоединены резисторы с большим сопротивлением по которым идет плюс. Поэтому второй плюс на пластине потихоньку разрежает конденсатор. Это тоже самое, что у вас батарейка с двумя плюсами. Надеюсь, что все поняли в чём фокус. Данные видео очень интересны как для школьников так и для взрослых.

  4. в радиоэлектронике, как и в большинстве областей, есть свой птичий язык, который понятен самим специалистам:) в данном видео тоже присутствуют такие словосочетания, смысл которых не сразу был понятен мне, человеку, которому себя электронщиком не считает, поэтому проходилось подолгу останавливать видео, думать, иногда переслушивать. Было бы намного удобнее воспринимать информацию, если бы автор обращал внимания больше на подобные моменты, пояснял их подробнее. Покажу на примере: было сказано, что “конденсаторы заряжаются через резисторы R1, R4, разряжаются через R2, R3”. В этот момент я остановил видео, и подумал, а куда собственно стекает заряд с конденсатора, куда течет этот ток, скажем так, по каким именно проводам. Я к тому, что сказано высказывание автора правильное, но короткое, новичку, которому хочется понять суть, приходится додумываться в некоторые моменты самому. Лично меня эта фраза ввела в ступор:) Хотя возможно, и наверно, это норма, когда обучающийся дорабатывает тонкие моменты сам.
    В целом уроки хорошие, буду продолжать смотреть.

Оставить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *